Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.702
Filtrar
1.
Virol J ; 21(1): 85, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600529

RESUMO

BACKGROUND: Avian influenza viruses (AIVs) constitute significant zoonotic pathogens encompassing a broad spectrum of subtypes. Notably, the H4 subtype of AIVs has a pronounced ability to shift hosts. The escalating prevalence of the H4 subtype heightens the concern for its zoonotic potential, signaling an urgent need for vigilance. METHODS: During the period from December 2021 to November 2023, we collected AIV-related environmental samples and assessed them using a comprehensive protocol that included nucleic acid testing, gene sequencing, isolation culture, and resequencing. RESULTS: In this study, a total of 934 environmental samples were assessed, revealing a remarkably high detection rate (43.66%, 289/662) of AIV in the live poultry market. Notably, the H4N1 subtype AIV (cs2301) was isolated from the live poultry market and its complete genome sequence was successfully determined. Subsequent analysis revealed that cs2301, resulting from a reassortment event between wild and domesticated waterfowl, exhibits multiple mutations and demonstrates potential for host transfer. CONCLUSIONS: Our research once again demonstrates the significant role of wild and domesticated waterfowl in the reassortment process of avian influenza virus, enriching the research on the H4 subtype of AIV, and emphasizing the importance of proactive monitoring the environment related to avian influenza virus.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Filogenia , Vírus da Influenza A/genética , Aves Domésticas , China/epidemiologia
2.
J Vet Sci ; 25(2): e33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38568834

RESUMO

Agricultural production is a major driver of the Philippine economy. Mass production of animal products, such as livestock and poultry farming, is one of the most prominent players in the field. Filipino farmers use veterinary medicinal products (VMPs) when raising agricultural animals to improve animal growth and prevent diseases. Unfortunately, the extensive use of VMPs, particularly antibiotics, has been linked to drug resistance in animals, particularly antibiotics. Antimicrobial gene products produced in animals due to the prolonged use of VMPs can passed on to humans when they consume animal products. This paper reviews information on the use of VMPs in the Philippines, including the regulations, their impact, challenges, and potential recommendations. The Philippines has existing legislation regulating VMP use. Several agencies were tasked to regulate the use of VMPs, such as the Department of Agriculture, the Department of Health, and the Philippine National Action Plan. Unfortunately, there is a challenge to implementing these regulations, which affects consumers. The unregulated use of VMPs influences the transmission of antibiotic residues from animals to crops to humans. This challenge should be addressed, with more focus on stricter regulation.


Assuntos
Aves Domésticas , Drogas Veterinárias , Animais , Humanos , Filipinas , Antibacterianos/uso terapêutico , Drogas Veterinárias/uso terapêutico
4.
Yi Chuan ; 46(3): 219-231, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38632100

RESUMO

CRISPR/Cas9 gene editing technology, as a highly efficient genome editing method, has been extensively employed in the realm of animal husbandry for genetic improvement. With its remarkable efficiency and precision, this technology has revolutionized the field of animal husbandry. Currently, CRISPR/Cas9-based gene knockout, gene knock-in and gene modification techniques are widely employed to achieve precise enhancements in crucial production traits of livestock and poultry species. In this review, we summarize the operational principle and development history of CRISPR/Cas9 technology. Additionally, we highlight the research advancements utilizing this technology in muscle growth and development, fiber growth, milk quality composition, disease resistance breeding, and animal welfare within the livestock and poultry sectors. Our aim is to provide a more comprehensive understanding of the application of CRISPR/Cas9 technology in gene editing for livestock and poultry.


Assuntos
Sistemas CRISPR-Cas , Gado , Animais , Gado/genética , Aves Domésticas/genética , Edição de Genes/métodos , Técnicas de Introdução de Genes
5.
J Water Health ; 22(3): 572-583, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557572

RESUMO

Beta-lactamase-producing Enterobacterales bacteria cause severe hard-to-treat infections. Currently, they are spreading beyond hospitals and becoming a serious global health concern. This study investigated the prevalence and molecular characterization of extended-spectrum ß-lactamase and AmpC-type ß-lactamase-producing Enterobacterales (ESBL-PE, AmpC-PE) in wastewater from livestock and poultry slaughterhouses in Ardabil, Iran. A total of 80 Enterobacterales bacteria belonging to 9 species were identified. Among the isolates, Escherichia coli (n = 21/80; 26.2%) and Citrobacter spp. (n = 18/80; 22.5%) exhibited the highest frequency. Overall, 18.7% (n = 15/80) and 2.5% (n = 2/80) of Enterobacterales were found to be ESBL and AmpC producers, respectively. The most common ESBL producer isolates were E. coli (n = 9/21; 42.8%) and Klebsiella pneumoniae (n = 6/7; 85.7%). All AmpC-PE isolates belonged to E. coli strains (n = 2/21; 9.5%). In this study, 80% of ESBL-PE and 100% of AmpC-PE isolates were recovered from poultry slaughterhouse wastewater. All ESBL-PE and AmpC-PE isolates were multidrug-resistant. In total, 93.3% of ESBL-PE isolates harbored the blaCTX-M gene, with the blaCTX-M-15 being the most common subgroup. The emergence of ESBL-PE and AmpC-PE in wastewater of food-producing animals allows for zoonotic transmission to humans through contaminated food products and contaminations of the environment.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Humanos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Aves Domésticas/microbiologia , Matadouros , Gado , Águas Residuárias , Prevalência , Irã (Geográfico) , Antibacterianos , beta-Lactamases/genética , Proteínas de Bactérias/genética , Bactérias
6.
J Vet Sci ; 25(2): e20, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38568822

RESUMO

BACKGROUND: Avian influenza (AI) is a contagious disease that causes illness and death in poultry and humans. High pathogenicity AI (HPAI) H5N6 outbreaks commonly occur in Quang Ninh province bordering China. In June 2021, the first HPAI H5N8 outbreak occurred at a Quang Ninh chicken farm. OBJECTIVES: This study examined the risk factors associated with HPAI H5N6 and H5N8 outbreaks in Quang Ninh. METHODS: A retrospective case-control study was conducted in Quang Ninh from Nov 2021 to Jan 2022. The cases were households with susceptible poultry with two or more clinical signs and tested positive by real-time reverse transcription polymerase chain reaction. The controls were households in the same village as the cases but did not show clinical symptoms of the disease. Logistic regression models were constructed to assess the risk factors associated with HPAI outbreaks at the household level. RESULTS: There were 38 cases with H5N6 clade 2.3.4.4h viruses (n = 35) and H5N8 clade 2.3.4.4b viruses (n = 3). Compared to the 112 controls, raising poultry in uncovered or partially covered ponds (odds ratio [OR], 7.52; 95% confidence interval [CI], 1.44-39.27), poultry traders visiting the farm (OR, 8.66; 95% CI, 2.7-27.69), farms with 50-2,000 birds (OR, 3.00; 95% CI, 1.06-8-51), and farms with ≥ 2,000 birds (OR, 11.35; 95% CI, 3.07-41.94) were significantly associated with HPAI outbreaks. CONCLUSIONS: Combining biosecurity measures, such as restricting visitor entry and vaccination in farms with more than 50 birds, can enhance the control and prevention of HPAI in Quang Ninh and its spread across borders.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Humanos , Influenza Aviária/epidemiologia , Estudos Retrospectivos , Estudos de Casos e Controles , Vietnã/epidemiologia , Surtos de Doenças/veterinária , Surtos de Doenças/prevenção & controle , Aves Domésticas , Galinhas
7.
BMC Vet Res ; 20(1): 136, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575983

RESUMO

BACKGROUND: Brachyspira (B.) pilosicoli is a zoonotic pathogen, able to infect different animal species such as pigs, poultry, and rodents, causing intestinal spirochetosis. An association of gastrointestinal clinical signs, such as diarrhea, with the isolation of B. pilosicoli from fecal samples or rectal swabs has not been proven in dogs. Other Brachyspira species commonly isolated from dogs, such as "B. canis" and "B. pulli", are considered commensals. This study investigated the occurrence of different Brachyspira species in rectal swabs and fecal samples in an independent canine cohort in central Germany. These included samples from shelter dogs, hunting dogs, and dogs presenting at regional small animal practices with various clinical signs. Data about the dogs, including potential risk factors for Brachyspira isolation, were obtained using a standardized questionnaire. The study also longitudinally investigated a colony of Beagle dogs for Brachyspira over 5 years. RESULTS: The rate of Brachyspira spp. isolation was 11% and included different Brachyspira species ("B. canis", "B. pulli", and B. pilosicoli). "B. canis" was detected in 18 dogs, whereas B. pilosicoli was only isolated from 1 dog in the independent cohort (not including the Beagle colony). Risk factors for shedding Brachyspira and "B. canis" were being less than 1 year of age and shelter origin. Gastrointestinal signs were not associated with the shedding of Brachyspira. B. pilosicoli and "B. canis" were isolated from several dogs of the same Beagle colony in 2017 and again in 2022, while Brachyspira was not isolated at multiple sampling time points in 2021. CONCLUSIONS: Shedding of B. pilosicoli in dogs appears to be uncommon in central Germany, suggesting a low risk of zoonotic transmission from dogs. Commensal status of "B. canis" and "B. pulli" is supported by the results of this study. Findings from the longitudinal investigation of the Beagle colony agree with an asymptomatic long-term colonization of dogs with "B. canis" and B. pilosicoli and suggest that introducing new animals in a pack can trigger an increased shedding of B. pilosicoli.


Assuntos
Brachyspira , Humanos , Animais , Cães , Suínos , Estudos Longitudinais , Aves Domésticas , Fatores de Risco , Alemanha/epidemiologia
8.
Arch Virol ; 169(5): 99, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625394

RESUMO

H9N2 avian influenza viruses (AIVs) affect both poultry and humans on a global level, and they are especially prevalent in Egypt. In this study, we sequenced the entire genome of AIV H9N2 isolated from chickens in Egypt in 2021, using next-generation sequencing (NGS) technology. Phylogenetic analysis of the resulting sequences showed that the studied strain was generally monophyletic and grouped within the G1 sublineage of the Eurasian lineage. Four segments (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acidic [PA], and non-structural [NS]) were related to Egyptian genotype II, while the nucleoprotein (NP), neuraminidase (NA), matrix (M), and haemagglutinin (HA) segments were related to Egyptian genotype I. Molecular analysis revealed that HA protein contained amino acid residues (191H and 234L) that suggested a predilection for attaching to human-like receptors. The antigenic sites of HA had two nonsynonymous mutations: V194I at antigenic site A and M40K at antigenic site B. Furthermore, the R403W and S372A mutations, which have been observed in H3N2 and H2N2 strains that caused human pandemics, were found in the NA protein of the detected strain. The internal proteins contained virulence markers: 504V in the PB2 protein, 622G, 436Y, 207K, and 677T in the PB1 protein, 127V, 550L, and 672L in PA protein, and 64F and 69P in the M protein. These results show that the detected strain had undergone intrasubtype reassortment. Furthermore, it contains changes in the viral proteins that make it more likely to be virulent, raising a question about the tendency of AIV H9N2 to become highly pathogenic in the future for both poultry and humans.


Assuntos
Antígenos de Grupos Sanguíneos , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Aves Domésticas , Vírus da Influenza A Subtipo H9N2/genética , Egito/epidemiologia , Galinhas , Fazendas , Vírus da Influenza A Subtipo H3N2 , Influenza Aviária/epidemiologia , Filogenia
9.
PLoS One ; 19(4): e0296542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626002

RESUMO

The emergence and spread of multidrug-resistant pathogens like Pseudomonas aeruginosa are major concerns for public health worldwide. This study aimed to assess the prevalence of P. aeruginosa in clinical, environmental, and poultry sources in Bangladesh, along with their antibiotic susceptibility and the profiling of ß-lactamase and virulence genes using standard molecular and microbiology techniques. We collected 110 samples from five different locations, viz., BAU residential area (BAURA; n = 15), BAU Healthcare Center (BAUHCC; n = 20), BAU Veterinary Teaching Hospital (BAUVTH; n = 22), Poultry Market (PM; n = 30) and Mymensingh Medical College Hospital (MCCH; n = 23). After overnight enrichment in nutrient broth, 89 probable Pseudomonas isolates (80.90%) were screened through selective culture, gram-staining and biochemical tests. Using genus- and species-specific PCR, we confirmed 22 isolates (20.0%) as P. aeruginosa from these samples. Antibiogram profiling revealed that 100.0% P. aeruginosa isolates (n = 22) were multidrug-resistant isolates, showing resistance against Doripenem, Penicillin, Ceftazidime, Cefepime, and Imipenem. Furthermore, resistance to aztreonam was observed in 95.45% isolates. However, P. aeruginosa isolates showed a varying degree of sensitivity against Amikacin, Gentamicin, and Ciprofloxacin. The blaTEM gene was detected in 86.0% isolates, while blaCMY, blaSHV and blaOXA, were detected in 27.0%, 18.0% and 5.0% of the P. aeruginosa isolates, respectively. The algD gene was detected in 32.0% isolates, whereas lasB and exoA genes were identified in 9.0% and 5.0% P. aeruginosa isolates. However, none of the P. aeruginosa isolates harbored exoS gene. Hence, this study provides valuable and novel insights on the resistance and virulence of circulating P. aeruginosa within the clinical, environmental, and poultry environments of Bangladesh. These findings are crucial for understanding the emergence of ß-lactamase resistance in P. aeruginosa, highlighting its usefulness in the treatment and control of P. aeruginosa infections in both human and animal populations.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa , beta-Lactamases/genética , beta-Lactamases/uso terapêutico , Virulência/genética , Hospitais Veterinários , Bangladesh , Aves Domésticas , Hospitais de Ensino , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/veterinária , Infecções por Pseudomonas/tratamento farmacológico , Testes de Sensibilidade Microbiana
10.
Open Vet J ; 14(1): 12-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633151

RESUMO

Newcastle disease (ND) is a tremendously contagious avian infection with extensive monetary ramifications for the chicken zone. To reduce the effect of ND on the Saudi rooster enterprise, our analysis emphasizes the necessity of genotype-particular vaccinations, elevated surveillance, public recognition campaigns, and stepped-forward biosecurity. Data show that one-of-a-kind bird species, outdoor flocks, and nearby differences in susceptibility are all vulnerable. The pathogenesis consists of tropism in the respiratory and gastrointestinal structures and some genotypes boom virulence. Laboratory diagnostics use reverse transcription-polymerase chain reaction, sequencing, and serotyping among different strategies. Vital records are supplied through immune responses and serological trying out. Vaccination campaigns, biosecurity protocols, and emergency preparedness are all covered in prevention and manipulation techniques. Notably, co-circulating genotypes and disparities in immunization regulations worry Saudi Arabia. The effect of ND in Saudi Arabia is tested in this paper, with precise attention paid to immunological reaction, pathogenesis, susceptibility elements, laboratory analysis, and preventative and manipulation measures. Saudi Arabia can shield its bird region and beef up its defences against Newcastle's ailment, enforcing those hints into its policies.


Assuntos
Doenças dos Bovinos , Doença de Newcastle , Doenças das Aves Domésticas , Bovinos , Animais , Masculino , Aves Domésticas , Galinhas , Arábia Saudita , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/epidemiologia , Doença de Newcastle/epidemiologia
11.
Open Vet J ; 14(1): 459-469, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633163

RESUMO

Background: eEscherichia coli (E. coli) bacteria that produce extended spectrum beta-lactamase (ESBL) is associated with a high prevalence of human illnesses worldwide. The emergence of resistance to carbapenem and colistin compounds poses further challenges to the treatment options for these illnesses. This study aimed to evaluate the phenotypic and genotypic pattern of resistance to carbapenem and colistin in ESBL-producing E. coli. Escherichia coli isolates collected from the respiratory tract of chickens in El-Sharkia government, Egypt. Methods: A total of 250 lung samples were collected from 50 poultry farms. These samples were then subjected to isolation, identification, and serotyping of E. coli. The presence of antimicrobial resistance was identified by disc diffusion testing. The occurrence of ESBL phenotypes was also assessed using the double disc synergy method. PCR/sequencing techniques were employed to examine the presence of ESBL (ß-lactamase (bla)-TEM, blaSHV, and blaCTX-M), colistin (mcr-1), and carbapenem (blaNDM, blaVIM, and blaKPC) resistance genes. Results: The findings revealed that 140 out of 250 (56%) were identified as E. coli. All E. coli isolates had a high level of multi-antimicrobial resistance (MAR) with an index value greater than 0.2, and 65.7% of them were confirmed to produce ESBL. Out of the 92 ESBL phenotypes, 55 (59.7%), 32 (34.7%), 18 (19.6%), and 37 (40.2%) isolates harbor b laTEM-3, b laSHV-4, b laCTX-M-1, a nd blaCTX-M-14 genes, respectively. The blaNDM-1 gene was identified in all 40 phenotypes that exhibited resistance to carbapenem, accounting for 28.5% of all strains of E. coli and 43.4% of ESBL isolates. The VIM and KPC genes were not detected in any of the samples. Furthermore, there was a significant prevalence of the mobilized colistin resistance (mcr)-1 gene, with 64 (69.5%) of the ESBL isolates exhibiting this gene. Conclusion: The prevalence of ESBL-producing E. coli, particularly those resistant to carbapenem and colistin, poses a significant public health risk in society.


Assuntos
Colistina , Infecções por Escherichia coli , Animais , Humanos , Colistina/farmacologia , Escherichia coli , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Aves Domésticas , Infecções por Escherichia coli/veterinária , Fazendas , Egito , Galinhas , Farmacorresistência Bacteriana/genética , beta-Lactamases/genética , beta-Lactamases/farmacologia , Fenótipo
12.
Open Vet J ; 14(1): 284-291, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633165

RESUMO

Background: Bacterial Omphalitis has been reported as a significant cause of mortalities in newly hatched broiler chicks. Aim: This study aimed to assess the occurrence of omphalitis among broiler chickens in Gharbia governorate in Egypt. In addition, the bacteria associated with the occurrence of omphalitis in broiler chickens were also investigated and characterized. Methods: For this purpose, 43 farms in that area were surveyed. The comparative levels of omphalitis caused by Escherichia coli (E. coli), Salmonella spp., and Staphylococcus aureus (S. aureus) were screened in 129 chicks. The drug resistance to eight commonly used antimicrobials in Egyptian poultry farms was screened using the disk diffusion method. Results: The overall incidence rate of omphalitis was 37.21%. In birds with omphalitis, the co-prevalence of S. aureus, Salmonella spp., and E. coli was 87.5%. When compared to healthy flocks, broiler chicks with omphalitis caused by Salmonella spp., E. coli, and S. aureus had a greater mortality rate in the first week of life. However, there were no significant differences in the mortality cases caused by these pathogens. Eighty-seven percent of the cases of omphalitis were linked to E. coli and 75% to Salmonella spp. and S. aureus. From the yolk sac of broiler chicks with omphalitis, E. coli, Salmonella spp., and S. aureus were isolated at rates of 87.5%, 62.5%, and 45.8%, respectively. The isolates of E. coli and Salmonella spp. exhibited great sensitivity to gentamycin and Tetracycline; however, the strongest drug resistance was observed toward cefpodoxime, sulphamethoxazole and trimethoprim, ampicillin, and amoxycillin and clavulanic acid. The recovered isolates of S. aureus showed susceptibility to chloramphenicol (72.37%), oxytetracycline (81.82%), and erythromycin (81.82%). However, every S. aureus isolate that was found resistant to amoxycillin and clavulanic acid, penicillin G and oxacillin. of blaTEM, blaSHV, and blaCTX-M genes has been proposed as the genetic cause of ß-lactam antibiotic resistance in Salmonella spp. and E. coli. MecA and blaZ; however, were found in every strain of S. aureus. Conclusion: The frequency of omphalitis and its associated mortalities was comparatively high in Gharbia governorate. More efforts should be made to adopt strict hygienic standards for controlling and preventing such disease and this will consequently lead to minimizing the use of antimicrobials in poultry farms.


Assuntos
Antibacterianos , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Escherichia coli , Staphylococcus aureus , Galinhas , Egito , Prevalência , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/veterinária , Infecções Estafilocócicas/veterinária , Aves Domésticas , Salmonella , Amoxicilina , Ácido Clavulânico
13.
Open Vet J ; 14(1): 438-448, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633178

RESUMO

Background: Nowadays veterinarians and poultry producers use antibiotics to increase growth rates, bird health, and feed efficiency, egg production, for preventative and therapeutic purposes, and to lessen the prevalence of poultry diseases. Most poultry producers have used a variety of antibiotics, either with or without veterinarian instruction. Although antibiotics are beneficial for the majority of their uses, their unauthorized use has resulted in residues accumulated in poultry products intended for human consumption which represents a serious risk to the general public that could be toxicological, microbiological, or immunological. Aim: This study aimed to the estimation of the residues of three major antimicrobials used in the intensive chicken-rearing systems in Egypt, namely Oxytetracycline (OTC), Gentamicin, and Ciprofloxacin. Moreover, the effect of cooking on such residues was investigated. Methods: A total of 100 chicken meat samples (breast, thigh, gizzard, liver, 25 each) were examined for detection of the aforementioned antimicrobials using the microbial inhibition assay and high-performance liquid chromatography (HPLC). Besides, samples containing the highest antimicrobial residues were examined for the effect of boiling for 30 minutes on such residues. Results: The obtained results revealed that 23%, 21%, and 17% of the examined samples were positive for OTC, gentamicin, and ciprofloxacin residues , respectively . Cooking (boiling) for 30 minutes showed a reduction of the antibiotic residue by 88.2%, 95.2%, and 31.3%, respectively. Conclusion: Antimicrobial residues were detected in the chicken meat parts retailed in Egypt. Cooking can reduce the antimicrobial residues at least in part.


Assuntos
Anti-Infecciosos , Oxitetraciclina , Animais , Humanos , Antibacterianos/farmacologia , Galinhas , Aves Domésticas/microbiologia , Ciprofloxacina , Gentamicinas
14.
J Environ Manage ; 357: 120844, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579469

RESUMO

The incineration of poultry litter (PL) effectively reduces the volume of waste in line with the United Nations Sustainable Development Goal of "affordable and clean energy". However, mono-incineration is associated with considerable challenges due to the varying moisture, structural and chemical composition and low energy yield. The aim of the present work was to investigate the influence of sweet sorghum bagasse (SS) and pyrolysis oil (PO) on improving the fuel properties of PL and mitigating ash related burdens during incineration. The different biomass feedstocks were produced by combining PL with SS at 0.0% (T0), 25% (T1), 50% (T2), 75% (T3) and compared with 100% SS (T4). In order to achieve high energy potential and low ash deposition, the parallel samples were additionally mixed with 10% PO to improve the energy value. The experimental results show that increasing the proportion of SS and adding PO to the mixtures increases the volatile matter and decreases the moisture and ash content. The addition of PO also increases the carbon and hydrogen content. The use of SS and PO thus increased the values of the ignitability index and apparently also the flammability by 30.0%-49.4% compared to pure PL. SS and PO shifted the HHV of the starting material from 16.90 to 18.78 MJ kg-1. In addition, SS + PO improved the flame volume and red color intensity of the PL blends based on the image analysis method. However, the presence of SS and PO did not sufficiently improve the ash-related index values, which requires further investigation.


Assuntos
Celulose , Aves Domésticas , Sorghum , Animais , Pirólise , Incineração/métodos
16.
Adv Food Nutr Res ; 108: 289-341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461002

RESUMO

Salmonella is a significant pathogen of human and animal health and poultry are one of the most common sources linked with foodborne illness worldwide. Global production of poultry meat and products has increased significantly over the last decade or more as a result of consumer demand and the changing demographics of the world's population, where poultry meat forms a greater part of the diet. In addition, the relatively fast growth rate of birds which is significantly higher than other meat species also plays a role in how poultry production has intensified. In an effort to meet the greater demand for poultry meat and products, modern poultry production and processing practices have changed and practices to target control and reduction of foodborne pathogens such as Salmonella have been implemented. These strategies are implemented along the continuum from parent and grandparent flocks to breeders, the farm and finished broilers to transport and processing and finally from retail to the consumer. This review focuses on common practices, interventions and strategies that have potential impact for the control of Salmonella along the poultry production continuum from farm to plate.


Assuntos
Doenças Transmitidas por Alimentos , Aves Domésticas , Animais , Humanos , Galinhas , Carne , Salmonella , Microbiologia de Alimentos
17.
PLoS One ; 19(3): e0296911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427679

RESUMO

Nepal's poultry industry has experienced remarkable growth in the last decade, but farm biosafety and biosecurity measures are often overlooked by farmers. As a result, farms often suffer from sporadic and regular outbreaks of many diseases, impacting production and creating public health challenges. Poor management practices, including overuse of antibiotics for prophylaxis and therapeutics, can enhance the spread of poultry diseases by propagating antimicrobial resistance (AMR) that is threatening poultry and human health. We assessed biosafety, biosecurity risks and AMR stewardship in sixteen poultry farms located in four districts: Ramechhap, Nuwakot, Sindhupalchowk, and Kavre. Risk assessment and AMR stewardship evaluation questionnaires were administered to formulate biosafety and biosecurity compliance matrix (BBCM). Risk assessment checklist assessed facility operations, personnel and standard operating procedures, water supply, cleaning and maintenance, rodent/pest control and record keeping. Oral and cloacal samples from the poultry were collected, pooled, and screened for eight poultry pathogens using Polymerase Chain Reaction (PCR) tests. Based on BBCM, we identified the highest BBCM score of 67% obtained by Sindhupalchowk farm 4 and the lowest of 12% by Kavre farm 3. Most of the farms (61.6%) followed general poultry farming practices, only half had clean and well-maintained farms. Lowest scores were obtained for personnel safety standard (42.4%) and rodent control (3.1%). At least one of the screened pathogens were detected in all farms. Mycoplasma gallisepticum was the most common pathogen detected in all but three farms, followed by Mycoplasma synoviae. More than half of the farmers considered AMR a threat, over 26% of them used antibiotics as a preventive measure and 81% did not consider withdrawal period for antibiotics prior to processing of their meat products. Additionally, antibiotics classified as "Watch" and "Restrict" by the WHO were frequently used by the farmers to treat bacterial infections in their farms.


Assuntos
Gestão de Antimicrobianos , Aves Domésticas , Animais , Humanos , Fazendas , Projetos Piloto , Contenção de Riscos Biológicos , Biosseguridade , Antibacterianos/uso terapêutico , Nepal
18.
Mol Biol Rep ; 51(1): 404, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456953

RESUMO

BACKGROUND: Pathogenic and non-pathogenic strains of Escherichia coli harbouring antibiotic resistance genes (ARGs) from any source (clinical samples, animal settings, or environment) might be transmitted and contribute to the spread and increase of antibiotic resistance in the biosphere. The goal of this study was to investigate the genome to decipher the repertoire of ARGs, virulence genes carried by E. coli strains isolated from livestock, poultry, and their handlers (humans), and then unveil the genetic relatedness between the strains. METHODS: Whole genome sequencing was done to investigate the genetic makeup of E. coli isolates (n = 20) [swine (n = 2), cattle (n = 2), sheep (n = 4), poultry (n = 7), and animal handlers (n = 5)] from southern India. The detection of resistome, virulome, biofilm forming genes, mobile genetic elements (MGE), followed by multilocus sequence typing (MLST) and phylogenetic analyses, were performed. RESULTS: E. coli strains were found to be multi drug resistant, with a resistome encompassing > 20 ARGs, the virulome-17-22 genes, and > 20 key biofilm genes. MGE analysis showed four E. coli isolates (host: poultry, swine and cattle) harbouring composite transposons with ARGs/virulence genes (blaTEM, dfr, qnr/nleB, tir, eae,and esp) with the potential for horizontal transfer. MLST analyses revealed the presence of ST937 and ST3107 in both livestock/poultry and their handlers. Phylogenomic analyses with global E. coli isolates (human/livestock/poultry hosts) showed close relatedness with strains originating from different parts of the world (the United States, China, etc.). CONCLUSION: The current study emphasizes the circulation of strains of pathogenic sequence types of clinical importance, carrying a diverse repertoire of genes associated with antibiotic resistance, biofilm formation and virulence properties in animal settings, necessitating immediate mitigation measures to reduce the risk of spread across the biosphere.


Assuntos
Infecções por Escherichia coli , Saúde Única , Animais , Bovinos , Humanos , Suínos , Ovinos/genética , Escherichia coli , Aves Domésticas/genética , Filogenia , Virulência/genética , Gado/genética , Infecções por Escherichia coli/veterinária , Tipagem de Sequências Multilocus , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos
19.
Vet Q ; 44(1): 1-13, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465827

RESUMO

Marek's disease virus (MDV) has become an increasingly virulent pathogen in the poultry industry despite vaccination efforts to control it. Brazil has experienced a significant rise of Marek's disease (MD) outbreaks in recent years. Our study aimed to analyze the complete meq gene sequences to understand the molecular epidemiological basis of MD outbreaks in Brazilian vaccinated layer farms. We detected a high incidence rate of visceral MD (67.74%) and multiple circulating MDV strains. The most prevalent and geographically widespread genotype presented several clinical and molecular characteristics of a highly virulent strain and evolving under positive selective pressure. Phylogenetic and phylogeographic analysis revealed a closer relationship with strains from the USA and Japan. This study sheds light on the circulation of MDV strains capable of infecting vaccinated birds. We emphasize the urgency of adopting preventive measures to manage MDV outbreaks threatening the poultry farming industry.


Assuntos
Mardivirus , Doença de Marek , Doenças das Aves Domésticas , Animais , Aves Domésticas , Galinhas/genética , Brasil/epidemiologia , Filogenia , Mardivirus/genética , Doença de Marek/epidemiologia , Doença de Marek/prevenção & controle , Doença de Marek/genética , Fazendas , Oncogenes , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle
20.
Sci Adv ; 10(11): eadl3466, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478608

RESUMO

The transmission of viral diseases is highly unstable and highly contagious. As the carrier of virus transmission, cell is an important factor to explore the mechanism of virus transmission and disease. However, there is still a lack of effective means to continuously monitor the process of viral infection in cells, and there is no rapid, high-throughput method to assess the status of viral infection. On the basis of the virus light diffraction fingerprint of cells, we applied the gray co-occurrence matrix, set the two parameters effectively to distinguish the virus status and infection time of cells, and visualized the virus infection process of cells in high throughput. We provide an efficient and nondestructive testing method for the selection of excellent livestock and poultry breeds at the cellular level. Meanwhile, our work provides detection methods for the recessive transmission of human-to-human, animal-to-animal, and zoonotic diseases and to inhibit and block their further development.


Assuntos
Viroses , Vírus , Animais , Humanos , Aves Domésticas , Viroses/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...